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Unstable particles, together with their stable decay products, constitute probability col-
lectives that are defined as Hilbert spaces with dimension higher than one, nondecom-
posable in a particle basis. Their structure is considered in the framework of Birkhoff-von
Neumann’s Hilbert subspace lattices. Bases with particle states are related to bases with
a diagonal scalar product by a Hilbert-bein involving the characteristic decay parameters
(in some analogy to then-bein structures of metrical manifolds). Probability predic-
tions as expectation values, involving unstable particles, have to take into account all
members of the higher dimensional collective. For example, the unitarity structure of
the S-matrix for an unstable particle collective can be established by a transformation
with its Hilbert-bein.
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1. STABLE PARTICLE HILBERT SPACES

The Hilbert space used for stable particles with massm, momentumEp, and
possible homogeneous degrees of freedoma= 1, 2,. . . , K—including particles
and antiparticles with spin and internal degrees of freedom—comes with creation
operators ua(m, Ep) and annihilation operatorsu∗a(m, Ep). To have the involved con-
cepts and notations at hand, it is shortly reviewed by repeating its construction.

The underlying quantum structure for Bose (commutatorε= − 1) and Fermi
(anticommutatorε= + 1)

[u∗, u]ε = 1, [u, u]ε = 0= [u∗, u∗]ε

comes with the time translation behavior of the Bose and Fermi harmonic oscillator
as implemented by the Hamiltonian

H = E
[u, u∗]−ε

2

involving the quantum-opposite commutator and a frequency (energy) scaleE > 0.
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Creation and annihilation operators build by the linear combinations of their
products the quantum algebrasQε(C2), countably infinite dimensional for Bose
and 4-dimensional for Fermi

Qε(C2) = C[u, u∗]/modulo

{
[u∗, u]ε − 1

[u, u]ε , [u∗, u∗]ε

}

∼=
{
Cℵ0 Bose, ε = −1

C4 Fermi, ε = +1

basis ofQε(C2) :

{
{uk(u∗)l | k, l = 0, 1,. . .} Bose

{1, u, u∗, uu∗} Fermi

The given bases contain eigenvectors of the time translations,d
dt a = [iH , a]

[H, uk](u∗)l ] = (k− l )Euk(u∗)l

The Fock state〈 〉F, a conjugation compatible linear form of the quantum
algebras, is induced by the scalar product〈u | u〉 = 1 of the 1-dimensional basic
vector spaceCu. The scalar product invariance groupU(1) contains the irreducible
time translation representationt 7−→ eit E ∈ U(1), generated by the HamiltonianH

Qε(C2) 3 a 7→ 〈a〉F ∈ C
{
〈(u∗u)k〉F = (〈u∗u〉F)k = 1 k= 0, 1,. . .

〈(u∗)l uk〉F = 0 for k 6= l

The Fock space Fockε(C2) is a quotient space of the quantum algebra, consti-
tuted by the classes with respect to the elements with trivial scalar product (the
annihilation left ideal in the quantum algebra)

{a∈Qε(C2) | 〈aa∗〉F = 0} = Qε(C2)u∗, Fockε(C2) = Qε(C2)/Qε(C2)u∗

Fockε(C2) has a definite scalar product. The classes are called state vectors|a〉.
The class|0〉 (zero quantum state vector) of the algebra unit 1 is the harmonic
oscillator ground state. It is a cyclic vector for the quantum algebra action with
the annihilation property u∗|0〉 = 0. The state vectors|k〉 with k quanta constitute
a Fock space basis, they are time translation eigenvectors

ground state|0〉 = 1+Qε(C2)u∗, |k〉 = uk

√
k!
|0〉, H |K 〉 =

(
k− ε

2

)
E|k〉

basis of Fockε(C2):

{
{|k〉 | k = 0, 1,. . .} Bose

{|0〉, |1〉} Fermi

}
, 〈k | l 〉 = δkl

The Bose structure in quantum mechanics—not the Fermi structure—allows
a position–momentum interpretation

Bose only:x = u∗ + u√
2

, i p = u∗ − u√
2
⇒
{

[u∗, u] = 1= [i p, x]

H = E {u,u∗}
2 = E p2+x2

2
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The familiar Schr¨odinger wave functions|k〉 ∼= ψk(x) are orbits of the position
translationR = specx 3 x 7−→ ψ(x) ∈ C.

The Fermi Fock space is a Hilbert space as well as the completion of the Bose
Fock space. The Fock vector spaces are the direct sum of the totally symmetric
and antisymmetric tensor powers for Bose and Fermi respectively of the complex
1-dimensional Hilbert spaceC|1〉 with the 1-quantum state vectors of energyE
denoted by|1〉 = |E〉

Fock−(C2) =∨W−(E) ∼= Cℵ0

Fock+(C2) =∧W+(E) ∼= C2 with

{
Wε(E) = C|E〉 ∼= C
|E〉 = u(E) | 0〉, 〈E|E〉 = 1

Such Fock spaces will be used for different energies (frequencies)E = p0 =√
m2+ p−2.

For a stable particle with mass m, momentumEp and homogeneous degrees
of freedoma= 1, . . . , K one works with a direct sum-integral of Hilbert spaces,
integrating with a Lorentz invariant measure the 1-quanta Hilbert spaces for all
momenta

K⊕
a=1

∫
R3

d3 p

(2π )3 p0
Wa
ε (m, Ep) : [u∗b(m, Eq), ua(m, Ep)]ε = δa

b(2π )3 p0δ( Ep− Eq)

with

p0 =
√

m2+ p−2

Wa
ε (m, Ep) = C|m, Ep, a〉, |m, Ep, a〉 = ua(m, Ep)|0〉

〈m, Eq, b|m, Ep, a〉 = δa
b(2π )3 p0δ( Ep− Eq)

Up to the overcountably infinite dimensional momentum dependenceCR3
the

1-quantum basic Hilbert spaces used are a direct sum of a Bose and a Fermi space
with—for stable particles—orthogonal subspaces for different masses

W = W+ ⊕W− : Wε =
s⊕

A=1

Wε(mA), Wε(m) =
K⊕

a=1

Wa
ε (m) ∼= CK

〈mB, b|mA, a〉 = δABδ
a
b

The corresponding multiquanta states—generalizing the state vectors|k〉 ∈
Fockε(C2) above—are appropriately defined tensor products.

2. UNSTABLE STATES AND PARTICLES (PART 1)

To introduce into the later, more abstract sections, the kaon system with the
short and long lived unstable neutral kaon is given as an illustration.
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2.1. The Collective of Neutral Kaons

The system of the two neutralK -mesonsK 0
S,L (short and long) with the mass

denoted state vectors|MS,L〉

M = M0+ i
0

2
, 0 > 0

spans a 2-dimensional Hilbert space. The kaon particles are no CP-eigenstates
|K±〉 to which they can be transformed by an invertible (2× 2) matrix, called the
Hilbert-bein of the neutral kaon-system(

|MS〉
|ML〉

)
= ξ2

(
|K+〉
|K−〉

)
, ξ2 ∈ GL (C2)

Under the assumption of CPT-invariance the matrix is symmetric and
parametrizable by two complex numbers including a normalization factorN

ξ2 = 1

N
√

1+ |ε|2

(
1 ε

ε 1

)
, ε, N ∈C

There are no observable particles connected with the CP-eigenstates.
The time development is implemented by a Hamiltonian, non-hermitian for

unstable particlesH2 6= H∗2

for t ≥ 0 :
d

dt

(
|K+〉
|K−〉

)
= i H2

(
|K+〉
|K−〉

)
,

d

dt

(
|MS〉
|ML〉

)
= i diagH2

(
|MS〉
|ML〉

)
with the diagonal form for the energy eigenstates

ξ2H2ξ
−1
2 = diagH2 =

(
MS 0

0 ML

)
The CP-eigenstates constitute an orthonormal basis

CP-eigenstates:

(
〈K+ | K+〉 〈K+ | K−〉
〈K− | K+〉 〈K− | K−〉

)
=
(

1 0

0 1

)
whereas the scalar product of the energy eigenstates is given by the absolute square
of the Hilbert-bein

particles:ζ2 = ξ2ξ
∗
2 =

(
〈MS | MS〉 〈MS | ML〉
〈ML | MS〉 〈ML | ML〉

)
= 1

|N|2
(

1 δ

δ 1

)
with

δ = ε + ε
1+ |ε|2 , 0≤ |δ| ≤ 1
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The experiments give a nontrivial transition between the short and long lived
kaon proportional to the real part ofε. Thereforeζ2 is not diagonal andζ2 not
unitary

δ ∼ 0.327× 10−2⇒ ξ2 /∈ U(2)

A decomposition of the unit operator in the 2-dimensional Hilbert space can
be written with orthonormal bases, e.g. with CP-eigenstates

12 = |K+〉〈K+| + |K−〉〈K−|
or with the non-orthogonal particle basis which displays the inverse scalar product
matrix

ζ−1
2 =

|N|2
1− δ2

(
1 −δ
−δ 1

)

⇒ 12 = |N|
2

1− δ2
[|MS〉〈MS| − δ|MS〉〈ML | − δ|ML〉〈MS| + |ML〉〈ML |]

2.2. Decay Collectives

The two translation eigenstates (particles) for unstable kaons|MS,L〉 come
together with their decay products, e.g.|π, π〉, |π, π, π〉, |π, l , νl 〉, approximated
as stable in the following. All those particles together constitute an example for a
decay collective, consisting of unstable decaying particles and their stable decay
products.

In general,d unstable states (particles){|Mκ〉|κ = 1, . . . , d} spanning the
space|M〉 ∼= Cd with complex massesM = M0+ i 02 , 0 > 0, are considered
together with their stable decay modes, given bys states (particles){|ma〉|a =
1, . . . , s} with real massesm which span the space|m〉 ∼= Cs. All those particles
are assumed to span a Hilbert spaceW with dimensionn= d+ s. Therein, the
subspace|m〉 has an orthonormal particle basis

〈m | m〉 = 1s

There are orthonormal bases|U 〉 for the d-dimensional complementary space
|m〉⊥ ∼= Cd (

〈U | U 〉 〈U | m〉
〈m | U 〉 〈m | m〉

)
=
(

1d 0

0 1s

)
The time development in the orthonormal basis{|U 〉, |m〉} has the typi-

cal triangular form with the diagonal time development for the stable particles
m=m∗ = diag m and a nondiagonal (d× s) matrix D parametrizing the decay
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structure

for t ≥ 0 :
d

dt

(
|U 〉
|m〉

)
= i HW

(
|U 〉
|m〉

)
, HW =

(
Hd D

0 m

)
,

d

dt
|m〉 = im|m〉

The Hamiltonian cannot be hermitian, i.e.HW 6= H∗W—otherwise all eigenval-
ues would be real. It cannot even be normal in the orthonormal basis, i.e.HW H∗W 6=
H ∗W HW—otherwise it could be unitarily diagonalized diagHW = ξHWξ

−1 with
ξ ∈U(n) and, therewith, the energy eigenstates were necessarily orthogonal, having
the scalar product matrixξξ ∗ = 1n. The HamiltonianHW has to be diagonaliz-
able, i.e. its minimal polynomial has to have only order one zeros. The nonunitary
diagonalization matrix

ξW HWξ
−1
W = diagHW =

(
M 0

0 m

)
, ξW /∈ U(n), M 6= M∗

called the Hilbert-bein of the decay collective, is the product of a (d× d) matrixξd

diagonalizingHd—as exemplified in the kaon system of the former subsection—
and a triangular matrix

ξd Hdξ
−1
d = M, ξW =

(
1d w

0 1s

) (
ξd 0

0 1s

)
=
(
ξd w

0 1s

)

⇒ HW = ξ−1
W (diagHW)ξW =

(
Hd ξ−1

d (Mw − wm)

0 m

)
i.e., D = ξ−1

d (Mw − wm)

The decaying particles|M〉 have projections both on the orthogonal states
|U 〉 and on the stable particles|m〉

particles:

(
|M〉
|m〉

)
=
(
ξd w

0 1s

) (
|U 〉
|m〉

)
=
(
ξd|U 〉 + w|m〉
|m〉

)
The scalar product matrix for the decay collective with then= d+ sparticles arises
from the diagonal matrix with the orthonormal states and the decay channels

ζW = ξWξ
∗
W =

(
〈M | M〉 〈M | m〉
〈m | M〉 〈m | m〉

)
=
(

1d w

0 1s

) (
ζd 0

0 1s

) (
1d 0

w∗ 1s

)

=
(
ζd + ww∗ w

w∗ 1s

)
with ζd = ξdξ

∗
d

The stable particles remain an orthogonal basis of the subspace|m〉.
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The decomposition of the Hilbert space unit operator in the nonorthogonal
particle basis displays the inverse scalar product matrix

ζ−1
W =

(
1d 0

−w∗ 1s

) (
ζ−1

d 0

0 1s

) (
1d −w

0 1s

)
=
(
ζ−1

d −ζ−1
d w

−w∗ζ−1
d 1s + w∗ζ−1

d w

)
⇒ 1n = |U 〉〈U | + |m〉〈m|

= |M〉ζ−1
d 〈M | − |M〉ζ−1

d w〈m| − |m〉w∗ζ−1
d 〈M | + |m〉(1s + w∗ζ−1

d w)〈m|
To define probabilities and expectation values for unstable particles, a more

general orientation with respect to the Hilbert space structures involved will be
useful.

3. LOGIC OF QUANTUM THEORY (A SHORT REVIEW)

With Boole, Leibniz’s dream of a formalization of logic which allows to
draw conclusions in a mechanical way—like arithmetic computation—started to
become realized. Apparently, logic condenses the structures of our experiences
and, therewith, shows a close relationship to the formulations of physics. With the
paramount importance of the complex linear superposition structure of quantum
theory the classical Boolean logic, appropriate for classical phase space physics,
gave way to a quantum logic as formulated by Birkhoff and von Neumann. As a
consequence, the probability structure, already arising in classical physics, e.g. in
thermostatistics, is not primary in quantum theory—it comes, so to say, as a square
of a linear complex probability amplitude structure.

Nothing is new in the following section—it should serve as a short reminder
and should introduce the concepts and notations used later on. In addition to
Birkhoff-von Neumann’s original article there is Varadarajan’s detailed text-book
which can be consulted for a deeper information.

3.1. Logics

The propositions of a logic are formalized as the elements of a lattice, i.e. of
a set with two associative and commutative inner compositions (meetu and join
t) which have an absorptive relationship to each other

(L , u, t) ∈ latt : a t (a u b) = a = a u (a t b) (absorptive)

Each lattice carries its natural ordera v b⇐⇒ a u b = a.
A lattice with an origin2—it is unique

2 v a, i.e.2 = 2 u a for all a∈ L

allows the definition of disjoint elements bya u b = 2.
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A complementary lattice has an involutive contramorphism relating meet and
join with the origin as meet for each lattice element and its complement

L → L , a 7→ ac, acc = a

{
(a t b)c = ac u bc

a u ac = 2 for all a∈ L

The complement of the origin is the unique end¥

2c = ¥ w a, a t ac = ¥ for all a∈ L

With an appropriate language for the logical concepts a complemented lattice
is used as a logic

(L , u, t, 2, c)∈ logic :



a∈ L : proposition

u : conjunction (and, et)

t : adjunction (or, aut)

v: implication (then, ergo)

2 : absurd proposition (falsehood, falsum)

ac ∈ L : negation (not, non)

¥ : self-evident proposition (truth, verum)

A lattice is distributive for

a t (bu c) = (a t b) u (a t c)

a u (bt c) = (a u b) t (a u c)

Weaker than distributivity is modularity, a partial associativity for meet and join

a v c⇒ a t (bu c) = (a t b) u c

3.2. Boolean Logics

A distributive logic is, by Stone’s theorem (Stone, 1936), isomorphic to a
lattice of subsetsM⊆ 2M = {X⊆M} with 2M the power set of a setM . The
lattice operations are intersection and union, the negation uses the set complement

(distributive)logic 3 (L , u, t, 2, c) ∼= (M, ∩, ∪, ∅, CM )

The valuation of a Boolean logic employs probability measures, i.e. disjoint
additive mappings on the lattice with positive values between 0 for the falsum and
1 for the verum

µ :M→ R+


µ(∅) = 0

µ(X ∪Y) = µ(X)+ µ(Y) for X ∩ Y = ∅
µ(M) = 1
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In the classical formulation of physics, the propositions in the corresponding
Boolean logic are subsets of the phase space of a physical system. In deterministic
classical mechanics, the measurements are formalized by the numerical values of
phase space functions, i.e. the probabilities used are yes–no probabilities on point
subsets{(x, p)} of the phase space

X = {(x, p)} : µx : {∅, X} → {0, 1}, µX(X) = 1

In thermostatistics coarser subset lattices are used.

3.3. Birkhoff-von Neumann Logics

The subspaces 2V̄ = {W⊆V | closed subspace} of a Hilbert spaceV—in the
following only over the abelian fieldsK = R, C—with, again, the intersection
as meet, but the span as join, the trivial space for the logical “falsum” and the
orthocomplementation for the negation constitute a linear logic

(L , u, t, 2, c) ∼= (2V̄ , ∩,+, {0},⊥) ∈ logic (linear)

A Hilbert state space of quantum mechanics is used for a Birkhoff-von Neumann
logic. It extends the set union for a Boolean logic by the quantum characteristic
linear superposition. In the following, the relevant features of subspace lattices are
reviewed.

For dimensionn≥ 2 (where the vector space endomorphisms are nonabelian)
linear lattices are not distributive (basis{ei })

Wi = Kei ∼= K, i = 1, 2 full space:V = W1+W2
∼= K2

diagonal space:1 = K(e1+ e2) ∼= K

(W1+W2) ∩1 = 1 6= (W1 ∩1)+ (W2 ∩1) = {0} + {0} = {0} = W1 ∩W2

A lattice with finite dimensional subspaces is modular.
Linear lattices can be “operationalized,” i.e. they can be embedded into the en-

domorphisms of the full vector spaceV , denoted byAL (V)—a unitalK-algebra,
for finite dimensionsAL (V) ∼= V ⊗ VT with the dual spaceVT . Any idempo-
tentP (projector forP 6= 0) defines a subspaceW and—by its kernel—a direct
complementW′

AL (V) 3 P = P2 7→ W = P(V) ∈ 2V

V = W⊕W′ with W′ = P−1(0) ∈ 2V

One subspace can be defined by different projectors and can have different
complements—in the example above with two different dual bases

idV = P1+ P2 = e1⊗ ě1+ e2⊗ ě2

= P ′1+ P1 = e1⊗ (ě1− ě2)+ (e1+ e2)⊗ ě2



P1: FHD

International Journal of Theoretical Physics [ijtp] PP597-379784-03 September 2, 2002 11:15 Style file version May 30th, 2002

1500 Saller

W1 = P1(V) = P ′1(V), V = W1⊕W2 = W1⊕1

Uniqueness can be obtained with a dual isomorphismV ζ↔VT .

With a nondegenerate inner product (symmetric bilinear or sesquilinear
form)

〈|〉 : V × V → K, ζ (v, w) = 〈v | w〉 = 〈v|w〉
〈v | w + u〉 = 〈v | w〉 + 〈v | u〉, 〈v | αw〉 = α〈v | w〉
〈v | V〉 = {0} ⇔ v = 0

each subspace has a unique orthogonal subspace partner

⊥: 2V → 2V , W 7→ W⊥ = {v ∈ V |〈W | v〉 = {0}}
In a finite dimensional spaceV orthogonality defines an involution

V ∼= Kn : W = W⊥⊥

With a nondegenerate square, projectors are bijectiveley related to subspaces

2V 3 W ζ↔PW ∈ AL (V), W = PW(V)

i.e., the lattice of vector subspaces can be considered to be operators.
The dual isomorphism allows the bra–ket notation (next subsection) where-

with the projector for a finite dimensional subspaceW ∼= Kk can be written with
a W-basis{eκ}kκ=1 (summation convention)

PW = |eκ〉ζλκ〈eλ| with 〈eλ | eµ〉 = ζµλ, ζµλζλκ = δµκ
trV PW = ζλκζ κλ = δκκ = d(W)

The involution defined by orthogonality is not complementary for an indefinite
nondegenerate square. E.g., in a 2-dimensionalO(1,1) Minkowski space with
Lorentz metric (1 0

0−1) in a basis{e0, e3}, time and position translations IT andS
resp. are orthogonal to each other whereas the isotropic lightlike subspacesL± are
self-orthogonal

IT⊥ = (Re0)⊥ = Re3 = S

αβ 6= 0⇒ R(αe0+ βe3)⊥ = R
(

1

α
e0+ 1

β
e3

)
⇒ L± = R(e0± e3) = L⊥±

PT = |e0〉〈e0|, PS = −|e3〉〈e3|, PL± = 1

2
|e0± e3〉〈e0∓ e3|

A complementary linear lattice has to come with a definite square, i.e. with a scalar
product, which is nondegenerate in each subspace
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〈v | v〉 = 0⇐⇒ v = 0⇒ Kn ∼= V = W +W⊥ = W⊕W⊥ = W⊥W⊥

An inner product ofV ∼= Cn is positive if, and only if, it is a productζn = SS∗ of
an endomorphismS∈ AL (V) and itsU(n)-hermitianS∗.

Now the probability valuation of vector space sublattices: With a scalar prod-
uctζ , each nontrivial finite dimensional vector spaceW carries a yes–no probability
with a normalized discriminant

ζ º 0 : µW : {∅, W} → {0, 1}
µW(W) = detζW = det〈eλ | eµ〉 = 1

The classical measure comes as the positive scalar product.
The Schr¨odinger wave functions—possible for Bose structures, e.g. the har-

monic Bose oscillator above|k〉 ∼= ψk(x)—as position translation orbits allow a
“smearing out” of the probabilities for the 1-dimensional subspaces (Hilbert rays
W = C|k〉)

detζW = 〈k | k〉 =
∫

R
dx|ψk (x)|2 = 1

to position densities for the probability, here|ψk(x)|2.
For finite dimensionV ∼= Kn, the trace is an invariant linear form with the

trace of a projector giving the dimension of the defined subspace

trV : AL (V)→ K, f 7→ trV f

trV P = dimKP(V)

The expectation valuesEW in the subspaceW of the operating algebra elements
uses the trace, normalized with the dimension trPW = d(W)

AL (V) 3 f 7→ EW( f ) = 1

d(w)
trV PW ◦ f = ζλκ〈eλ| f |eκ〉

d(W)
∈ K

The expectation values inW of the other subspaces use their operational form as
projectors

EW : 2V → R+


EW(U ) = EW(PU ) = 1

d(W) trV PW ◦ PU ∈ [0, d(U )]

EW(U1 ⊥ U2) = EW(U1)+ EW(U2)

U ⊆ W⇒ EW(U ) = d(U )
d(W)

EW(V) = EW(idV ) = 1
d(W) trV PW = 1= EW(W)

A familiar special case are the symmetric transition probabilities between two
1-dimensional spaces (i = 1, 2)

Wi = K|ei 〉, PWi = |ei 〉〈ei | ⇒ EW1(W2) = EW2(W1) = |〈e1 | e2〉|2 ∈ [0, 1]
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A basis formulation reads as follows—each subspace comes with a basis
(different indices)

PW = |eκ〉ζλκ〈eλ|
PU = |eA〉ζB A〈eB|

}
⇒
{

PW ◦ PU = |eκ〉ζλκ〈eλ | eA〉ζB A〈eB|
trV PW ◦ PU = ζλκζB A〈eλ | eA〉〈eκ | eB〉

especially simple for Euclidean bases

ζλκ = δλκ , ζB A = δB A⇒ trV PW ◦ PU =
∑
λ, A

|〈eλ | eA〉|2 ≤ d(W)d(U )

3.4. Hilbert-Beins for Particle Collectives

For a basis{eκ |κ = 1, . . . , n} of the Hilbert spaceW ∼= Cn the scalar product
gives the matrix

ζ : W ×W→ C, 〈eλ | eκ〉 = ζ κλ = ζ λκ
with the inverse scalar product on the dual space (linear forms) with the dual basis
{eκ |κ = 1, . . . , n}

ζ−1 : WT ×WT → C, 〈eλ | eκ〉 = ζκλ = ζλκ
The dual isomorphismW ∼= WT , induced by a nondegenerate product, allows
Dirac’s bra-ket notation

eκ = |eκ〉
eκ = 〈eλ|ζλκ

}
⇒ dual product:δκµ = 〈eµ, eκ〉 = 〈eλ | eκ〉ζλµ = ζ κλζλµ

Using the dual isomorphism, which is antilinear for a sesquilinear formζ , a linear
transformation ofW can be expressed in the bra-ket notation

f : W→ W, f = f λκ eκ ⊗ eλ = |eκ〉ζλµ f µκ 〈eλ|
〈eλ| f |eκ〉 = f κµ ζ

µλ = f κλ

Orthonormal bases{ea|a = 1, . . . , n} are related to the basis{eκ} by a
W-automorphismξ (n-bein in the Hilbert space)

〈eb | ea〉 = δab,


ξ : W→ W, eκ = |eκ〉 7→ ξκa |ea〉
ξ−1T : WT → WT , eκ 7→ (ξ−1)a

κea

eκζ κλ = 〈eλ| 7→ (ξ∗)λa〈ea|
Bases of translation eigenstates describing unstable particles have not to be or-
thonormal. An unstable particle collectiveW↔PW comes with its Hilbert-bein
ξW.

The state space metric is the absolute square of the Hilbert-bein

〈eλ | eκ〉 = ζ κλ = (ξ ∗)λbδ
abξκa , ζ = ξδξ∗

〈eλ | eκ〉 = ζκλ = (ξ−1)b
λδab (ξ−1∗)a

κ , ζ−1 = ξ̂ δξ̂ ∗, ξ̂ = ξ−1∗



P1: FHD

International Journal of Theoretical Physics [ijtp] PP597-379784-03 September 2, 2002 11:15 Style file version May 30th, 2002

Unstable Particles 1503

The positivity of the Hilbert product is seen in the matrix product form—any
product f f ∗ of (n× n)-matrices is positive, i.e. has positive spectrum.

The Hilbert-beinζ arises in inner automorphisms for linear transformations—
in the bra-ket formulation

〈eλ| f |eκ〉 = (ξ ∗)λb〈eb| f |ea〉ξκa
Obviously, the structures above with the bra-ket formalism and the transition

from orthonormal to general bases constitute the sesquilinear product analogue
(Saller, 1998) of the more familiar structures with a bilinear real metricg, e.g. for
real 4-dimensional spacetime the raising and lowering of indices withg andg−1.
The metric is the square of the diagonalizing tetrad (vierbein)h

gµν = hνj η
k j hµk , g = hηhT

with flat Minkowski space orthogonal metrical matrixη = (1 0
0 −13

). The transposi-
tion T in the real bilinear case is replaced by the conjugate transposition∗ for the
complex Hilbert space. The spacetime metric discriminant detg = −(deth)2 has
its analogue in the discriminant of the Hilbert product

detζ = |detξ |2

which is used for the probability normalization of particle transition amplitudes.
What is not analogue for spacetime metric and vierbein, on the one side, and

Hilbert space product and Hilbert-bein, on the other side, is the real 4-dimensional
spacetime dependence of the tetrad (metric)x 7→ h(x) which has no counterpart
in the Hilbert-bein and state space metric. In addition there is the important dif-
ference that the bilinear metrical matrix represents a tensorg(x) ∈M (x)⊗M (x)
of the tangent Minkowski translationsM (x) ∼= R4 whereas the sesquilinear scalar
product matrix of the Hilbert space is no tensorζ /∈ W⊗W. Raising and lower-
ing indices with the Hilbert space metricζ , e.g. in〈eλ| f |eκ〉 = f κµ ζ

µλ, changes
bilinearity into sesquilinearity.

A spacetime tetrad represents (at each spacetime pointx) a class of the real
10-dimensional symmetric space with the Lorentz groups in the general linear
group

GL (R4)/O(1, 3)∼= D(1)× SL0(R4)/SO0(1, 3)

with the “overall” dilatation groupD(1)= expR and the orthochronous Lorentz
groupSO0(1, 3). The classes are characterized by the value of the similarity in-
variants which can be found in the coefficients of the characteristic polynomial
det (logh− X14) for the tetrad generator. The tetrad manifold has two continuous
invariants{10,1}which can be obtained also by diagonalization of the symmetric
metrical matrixg = gT with an orthogonal transformationO and and a double
hyperbolic dilatation transformationD, the latter one equalizing the dilatations for



P1: FHD

International Journal of Theoretical Physics [ijtp] PP597-379784-03 September 2, 2002 11:15 Style file version May 30th, 2002

1504 Saller

the three space directions

g = O D diaggDT OT with O ∈ SO(4), D ∈ SO0(1, 1)2

diagg =
(

e210 0

0 −13e21

)
= `2

√
c

(
1√
c3

0

0 −13
√

c

)

The two continuous invariants for the local rescaling of time and position (local
time and local length unit)

(dx0, dEx) 7→ (
e10(x)dx0, e1(x)dEx), e10(x) = `(x)

c(x)
, e1(x) = `(x)

arise from the invariant deth = `4

c for the overall dilatationD(1) and the invariant
c (local velocity unit) for the subgroupSO0(1, 1) inSL0(R4)/SO0(1, 3).

As for the Hilbert space metric, a Hilbert-bein represents a class of the real
n2-dimensional manifold with the unitary groups in the general linear group

GL (Cn)/U(n) ∼= D(1)× SL(Cn)/SU(n)

with one invariant forD(1) andn− 1 invariants for the special factor. Alln-
invariants (similarity invariants of the Hilbert-bein generator in det [logξ − X1n])
are taken from a continuous spectrum and can be found with the manifold
isomorphy

SU(n) ∼= SO(2)n−1× SU(n)/SO(2)n−1

SL(Cn)/SU(n) ∼= SO0(1, 1)n−1× SU(n)/SO(2)n−1

by a special unitary diagonalization of the hermitian scalar product matrix

ζ = ζ ∗

ζ = ξδξ ∗ = UdiagζU ∗ with U ∈ SU(n)

diagζ = e210

e211 · · · 0

· · ·
0 · · · e21n

 ∈ D(1)× SO0(1, 1)n−1,
n∑

k=1

1k = 0

The non-orthogonality of unstable particles gives rise to invariants{1k}nk=1 in a
normalized Hilbert-beinξ , detξ = 1, which are related to the characteristic decay
parameters.
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4. UNSTABLE STATES AND PARTICLES (PART 2)

4.1. The Unitarity of Particles

For stable particles with massm, Wigner’s definition (Wigner, 1939) is used,
characterizing a particle as a vector acted upon with a unitary irreducible repre-
sentation of the Poincar´e group which—because of the noncompact nonabelian
degrees of freedom—has to be infinite dimensional as expressed by the integral
above

∫
R3

d3 p
(2π )3 (2π )3 p0

whereR3 for the momenta parametrizes the boost cosets

SO0(1, 3)/SO(3). With Wigner’s definition, confined quarks are no particles, they
are no eigenvectors with respect to the spacetime translations, i.e. they have no
invariant translation eigenvalue (particle mass).

For massesm2 ≥ 0, the representations of the Poincar´e covering group
SL(C2) E×R4 with the orthochronous Lorentz covering groupSL(C2)/{±12} ∼=
SO0(1, 3) are induced from the unitary representations of the direct product little
groups with the spin or polarization group for the space rotations

for m2 > 0 : SU(2)× R→ U(1+ 2J)

for m2 = 0 : SO(2)× R→ U(1+ 2|J3|)

The translations in the direct product groups can be taken to be time translations,
e.g. in a rest system form2 > 0. They come in harmonic oscillator representations
as given in the 1st section and represented in the phase group, i.e. inU(1)∼=
U(1+ 2J)/SU(1+ 2J)

R 3 t 7→ eiEt ∈ U(1) with E ∈ R

In contrast to the compact position rotations the noncompact translations have
also representations in noncompact groups. Unstable particles with a nontrivial
positive width are orbits of not unitary irreducible time representations

R+ 3 t 7→ D(t) = e(iE− 0
2 )t /∈ U(1) with 0 > 0

They can be used only for the future monoidR+. Unitarity as necessary for a
complex representation of a real group is restored by taking the direct sum with
the anti-representation (inverse-conjugated) for the past monoidR−

R− 3 t 7→ D(−t)∗ = e(iE+ 0
2 )t /∈ U(1)

The resulting representation is indefinite unitary (Saller, 2001)

R 3 t 7→ D(t)⊕ D(−t)∗ = eiEt

(
e−

0
2 t 0

0 e+
0
2 t

)
∈ U(1, 1)⊂ GL (C2)
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leaving invariant the indefinite square in the off-diagonal isotropic basis

ζ(1,1) : C2× C2→ C, ζ(1,1)
∼=
(

0 1

1 0

)
which cannot be used for a Hilbert space product. It is possible to use a 2nd de-
composable conjugationU(1)× U(1)⊂ U(2) with scalar productζ2

∼= (1 0
0 1) in the

2-dimensional space. Then unstable particles are described by non-unitary future
monoid representations in a Hilbert space, i.e.—in contrast to stable particles—
the scalar product invariance group defining the probability does not contain the
represented time translations. Probabilities have a nontrivial time dependence.

Such aU(1, 1)-representation of the translations can be used—as for sta-
ble particles—to define corresponding representations of the Poincar´e monoid
SL(C2) E×R4

+ with R4
+ the future spacetime translation cone. In addition to the

energy width there arises also a momentum spread and, therewith, nontrivial spin
mixtures for unstable particles (Blum and Saller, in preparation).

These were some short remarks to bypass a not satifactorily solved problem—
how to reconcile the different unitarities for rotations (definite) and spacetime
translations (possibly indefinite) with the probability interpretation (necessarily
definite).

4.2. Nondecomposable Particle Collectives

In the “huge” Hilbert space with all particles there are—neglecting the mo-
mentum dependenceEp ∈ R3—1-dimensional subspaces connected with stable par-
ticles and higher dimensional ones for decay collectives. With respect to probabil-
ities and expectation values, those subspaces have to be considered as a “whole.”
This can be seen in some analogy to a relativistic spacetime vector with many
bases for time and space projectionsx = (x0, Ex), but with only one Lorentz
lengthx2.

It is assumed that the “huge” Hilbert space has a basis with particle states
(translation eigenstates), stable and unstable. It is decomposable into nondecom-
posable orthogonal subspaces〈W|U 〉 = {0} for W 6= U , assumed to be finite di-
mensional (always neglecting the continuous momentum dependenceEp ∈ R3).

A basis withn particle states in an orthogonally nondecomposable subspace
W ∼= Cn with a corresponding positive scalar product matrixζW = ξWξ

∗
W and

Hilbert-beinξW will be probability-normalized by its discriminant, detζW = 1,
and with trivial phase, i.e. the Hilbert-beinζW involves maximally (n2− 1)-real
parameters of a noncompact classSL(Cn)/SU(n) with (n− 1) continuous invari-
ants

scalar productζW = ξWξ
∗
W º 0 with detξW = 1
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A nondecomposable 1-dimensional space is the ray of a stable particle state

W = C|m〉 with detζ1 = 〈m | m〉 = 1

An orthogonally nondecomposable space withn ≥ 2 describes a decay collec-
tive W = |M〉 ⊕ |m〉 ∼= Cn as discussed above: The Hilbert-bein as transforma-
tion from orthogonal to particle basis can be brought to a triangular formξW =
(ξd w
0 1s

), w 6= 0, with a unit submatrix leaving invariant the subspace|m〉 ∼= Cs with
s ≥ 1 stable states and a non-orthogonal complement|M〉 ∼= Cd with d ≥ 1 un-
stable states. The discriminant normalization of the full scalar product matrix
coincides with the discriminant normalization for the unstable states

detζW = 〈detξW | detξW〉 = 〈M | M〉〈m | m〉 − 〈M | m〉〈m | M〉

= det

(
ζd + ww∗ w

w∗ 1s

)
= detζd = 〈detξd | detξd〉 = 1

The projector for the decay collective involves the inverse scalar product matrix
ζ−1

W

PW = |M〉ζ−1
d 〈M | − |M〉ζ−1

d w〈m| − |m〉w∗ζ−1
d 〈M | + |m〉(1s + w∗ζ−1

d w)〈m|
The projectors for the non-orthogonal subspaces are

P|M〉 = |M〉(ζd + ww∗)−1〈M |, P|m〉 = |m〉1s〈m|
The probability normalization for the kaon system with the discriminant is

collective: It involves the decay parameter, i.e. the non-orthogonalityδ with 0 <
δ2 < 1

detζ2 = 〈MS | MS〉〈ML | ML〉 − 〈MS | ML〉〈ML | MS〉

= det
1

|N|2
(

1 δ

δ 1

)
= 1− δ2

|N|4 = 1⇒ |N|2 =
√

1− δ2

and differs from the individual probability normalization for each particle which
would be given by|N|2 = 1. The continuous invariant1 related to the rank 1 of
the Hilbert-bein manifoldSL(C2)/SU(2)∼= SO0(1, 1)× SU(2)/SO(2) is seen in
theSO0(1, 1)-adapted parametrization of the kaonscalar product(
〈MS | MS〉 〈MS | ML〉
〈ML | MS〉 〈ML | ML〉

)
=
(

cosh1 sinh1

sinh1 cosh1

)
∼
(

e1 0

0 e−1

)
, tanh1 = δ

Neglecting weak and electromagnetic interactions, the neutron and pion, e.g.,
are stable. Taking into account the mentioned interactions, each of these parti-
cles constitutes the decaying subspace of a decay collective, e.g. for the neutron
{|n〉, |p, e, v̄e〉} with a nontrivial projection〈n|p, e, v̄e. “Switching on” all inter-
actions there seems to exist only a small number of high dimensional orthogonally
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Invariants for Nondecomposable Collectives

Particle Mass for SpinSU(2) or Charge Fermion number
(lowest mass translationsR4 polarizationSO(2) U(1) U(1)
representative m2 Jor± |J3| Q F

Photon 0 ±1 0 0
(Anti) proton > 0 1

2 ±1 ±1
(Anti)electron > 0 1

2 ∓1 ±1
(Anti)neutrino > 0 or= 0 (?) 1

2 or ± 1
2 (?) 0 ±1

nondecomposable particle collectives which span the particle Hilbert space. Their
particle representatives with lowest mass (the lowest step in the staircase) reflect
the few invariants of relativistic particle physics, i.e. the mass for spacetime trans-
lationsR4, the rotation invariants, characterizing spinSU(2) for massive particles
and polarizationSO(2) for massless ones and the electromagnetic charge num-
ber for a phase groupU(1). If the proton is stable, there has to be an additional
invariant, usually related to fermion numberF conservation which is taken care
of with the different association of charge and fermion number for proton with
Q+ F = 2 and electron withQ+ F = 0. In addition, there may exist invariants
for the leptonic phases—electronic, muonic, and tauonic.

Stable and unstable particle states come on the same level as Hilbert space
directions—stable particles, e.g. the electron, are not “more fundamental” than
unstable ones, e.g. the muon or the pion. AnS-matrix with only stable in- and
out-particle state vectors where the unstable ones are taken care of as intermediate
fictive poles only (Weinberg, 1995) is against a democratic treatment. Depending
on the degree of approximation to the distinction of stable–unstable as quantified
in the magnitude of the off-diagonal entriesw in the Hilbert-beinξW, one may
work with a larger or a smaller number of nondecomposable collectives, i.e. with
a smaller or a larger number of stable particles.

4.3. (Non) Unitary S-Matrix for Unstable Particles

As an example, how the collective higher dimensional structure affects the
probability interpretation, the unitarity structure of theS-matrix, involving a scat-
tering with unstable particles, is considered.

Starting from a free HamiltonianHo acting on a Hilbert space with an eigen-
vector basis

H0|E〉 = E|E〉
the in and out states for an interaction HamiltonianH are assumed to be con-
structable by inner automorphisms with the Moeller operatorsÄ± for infinite
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future and past (Weinberg, 1995)

H = Ä±H0Ä
−1
± ⇒ H |E±〉 = E|E±〉 for |E±〉 = Ä±|E±〉

The scattering operator is the product of the Moeller operators

S= Ä∗+Ä−
In quantum mechanics the Moeller operators are assumed to arise as limits

Ä(t) = eiHte−i H0t , Ä± = lim
t→±∞Ä(t),

Unitarity for hermitian Hamiltonians is assumed to survive the limit

if H0 = H∗0 , H = H∗ ⇒ Ä(t)∗ = Ä(t)−1, Ä∗± = Ä−1
± ⇒ S∗ = S−1

The scattering amplitudes are not matrix elements of linear transformations,
but scalar products of in and out states—sesquilinear, not bilinear structures. They
start with the scalar product matrix of the free particles〈

Eλ
+ | Eκ

−
〉 = 〈Eλ|S|Eκ〉 = 〈Eλ|Eκ〉 − 2iπ〈Eλ|T |Eκ〉, S= 1− 2iπT

If a decay collective is involved, theS-matrix Sκλ is not unitary

Sκλ = 〈Eλ|S|Eκ〉 = ζ κλ + · · · = ξλb δba(ξ ∗)κa + · · ·
Unitarity is expected for theS-matrix Sa

c transformed with the Hilbert-bein from
a nonorthonormal particle basis into an orthonormal nonparticle basis

ξ̂b
λ 〈Eλ|S|Eκ〉(ξ̂ ∗)a

κ = 〈b|S|a〉 = Sa
c δ

cb
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